http://ai-researcher.net/
一、3个AI任务验证:两周取得人类三年研究成果,超越人类183.7%
尽管此前的AI科研系统已能想出一些新点子,但它们往往缺乏针对性,无法解决紧迫的人类定义挑战,难以产出具有科学价值的成果。
西湖大学研究团队推出的DeepScientist系统,试图通过在长达数月的时间里进行目标导向的、完全自主的科学发现,来克服这一局限。
首先来看看三个AI任务,DeepScientist是如何取得科研成果的。
第一个AI任务是具有较高复杂度的“智能体故障归因”,即找出多AI系统里哪个AI导致任务失败。
DeepScientist发现当前方法缺乏归因所必需的反事实推理能力。通过反复试验、不断纠错以及综合新发现,最终提出了一种名为A2P(Abduction-Action-Prediction,溯因-行动-预测)的全新方法。
其核心创新在于将任务从简单的模式识别提升到结构化的因果推理,通过预测某个提议的解决方案是否本可带来成功,填补了反事实能力方面的关键空白。
这种新方法在Who&When基准测试的“算法生成”设置中获得了47.46分,比人类的SOTA基准提高了183.7%。截至2025年9月,无需训练的A2P方法仍保持着最先进水平的地位,也高于DeepSeek-R1、Claude-4-Sonnet、Qwen3-Coder、Gemini 2.5 Pro、GPT-OSS-120B的成绩。

DeepScientist完成的研究论文截图
论文地址: https://github.com/ResearAI/DeepScientist/blob/main/case/DS_A2P.pdf
二是大语言模型的推理加速任务,即让大语言模型运算更快。
此过程中,系统进行了许多不同的尝试,例如使用卡尔曼滤波器动态调整邻接矩阵,以解决原始方法缺乏记忆功能的问题。尽管这些尝试大多失败了,但系统生成的ACRA方法最终通过识别稳定的后缀模式,如图3所示,将MPBB从人类的最优水平190.25 tokens/秒提升到了193.90 tokens/秒。
从科学角度而言,这项创新意义重大,因为它利用这些额外的上下文信息动态调整解码猜测,有效地为该过程植入了长期记忆,打破了标准解码器的上下文坍缩问题。这一发现凸显了该系统的主要目标:创造人类未知的新知识,而非仅仅进行工程优化。
DeepScientist将MPBB提升到了193.90 tokens/秒
(该论文暂未上传GitHub)
三是AI文本检测,即让它判断一段文字是人类写的还是AI写的。
DeepScientist仅用两周就取得了相当于人类三年研究成果的进展。它通过在无需人类干预的情况下,实现目标导向、持续且迭代式的科学发现,克服了传统研究效率低的难题。
DeepScientist自主生成了2472个独特的研究思路,实现了600个最有前景的假设,并最终开发出在RAID数据集上将AUROC得分提高7.9%的方法,同时降低了推理延迟。
该系统产生了三种截然不同、且性能逐步提升的方法:T-Detect、TDT和PA-Detect。
首先,T-Detect通过稳健的t分布修正了核心统计数据,随后,TDT和PA-Detect在概念上进行了演进,它们将文本视为一种信号,并使用小波和相位一致性分析来精确定位异常。从科学角度来看,这种转变揭示了AI生成文本的“非平稳性”,缓解了先前范式中因平均化局部证据而产生的信息瓶颈。
如下图所示,这一完整的发现轨迹展示了DeepScientist在逐步推进前沿科学发现方面的能力,它建立了新的SOTA,AUROC提高了7.9%,同时推理速度也提升了一倍。

DeepScientist在AUROC得分提高了7.9%

DeepScientist完成的研究论文截图
论文地址: https://github.com/ResearAI/DeepScientist/blob/main/case/DS_TDT.pdf

DeepScientist完成的研究论文截图
论文地址: https://github.com/ResearAI/DeepScientist/blob/main/case/DS_T_Detect.pdf
二、仅用8块英伟达H800 GPU完成AI课题,DeepScientist架构解读
三项AI任务背后,团队仅为DeepScientist配备了两台服务器,每台服务器带有8块英伟达H800 GPU。
背后,DeepScientist的创新之处在于将科学发现形式化为一个贝叶斯优化问题,并通过“提出假设、验证和分析”的分层评估流程加以实现。在这种分层方案中,只有展现出潜力的研究思路才会进入成本更高的评估阶段,从而在预算受限的情况下最大限度地提高发现效率。
DeepScientist的架构通过一个配备开放知识系统和持续积累的发现记忆(Findings Memory)的多智能体系统,实现了贝叶斯优化循环。其在探索新假设与挖掘最有前景的发现之间实现智能平衡,并将最具潜力的成果推进到更高保真度的验证阶段。
DeepScientist基于西湖大学此前已有研发成果,仅用两个月、花费约10万美元(约合71.3万元人民币)就搭建完成。来自西湖大学团队的文章第一作者Yixuan Weng最新采访记录公开,记录如下:
1、问:你之前的项目是CycleResearcher。为什么将这个新项目命名DeepScientist为而不是DeepResearcher?
答:早在2024年9月,我就计划将我现在的工作命名为“DeepResearcher”,类似于DeepReviewer。然而,OpenAI后来用了这个名字。所以我决定将我的项目命名为DeepScientist。
2、问:什么时候开源?
答:我会在确保足够安全的情况下才会开源,因为我还不能完全确定它DeepScientist给学术界带来的益处是否大于其潜在的风险。因此,我必须采取谨慎的态度。
(问:为什么要采取分阶段开源策略?)
因为社区热情高涨——几乎每个人都迫不及待地想让我开源它!我计划利用国庆节和中秋节假期来修改代码,以便社区能够尽早体验该系统,并探索它如何加速不同领域的科学发现。
感谢中关村研究院的支持,我们将能够免费向社区提供完整的DeepScientist系统。
3、问:我有机会重现或改进DeepScientist吗?
答:当然!我们只用了两个月就基于ResearStudio构建了它。我相信你可以轻松创建类似“Open-DeepScientist”或“nano-DeepScientist”的项目。我们强烈鼓励社区开展此类项目。
(ResearStudio是首个用于构建可人工干预的深度研究智能体的开源框架。它实现了人机实时协作,允许用户在执行过程中暂停、编辑和引导AI智能体,而非传统的“发射后不管”模式。其Agent核心层采用了规划器(GPT-4)和执行器(GPT-4o-mini/o3)。)
GitHub地址: https://github.com/ResearAI/ResearStudio?tab=readme-ov-file
4、问:您是否认为AI驱动的科学发现存在缩放定律?
答:我坚信AI驱动的科学发现遵循其自身的“缩放定律”。但这并非孤立现象——它是人类不断加速的科学发现的自然延伸和放大。纵观历史,科学进步的速度一直在不断加快,在现代,这种加速尤为明显。从中学开始,我就喜欢玩《席德·梅尔的文明》,游戏中知识和技术的积累会更快地带来“尤里卡时刻”。我相信,我们现在正在进入一个由AI驱动的现实世界的“尤里卡时代”。
5、问:目前,所谓的“AI科学家”看起来更像是“高通量试错机器”,而不是真正具有深刻洞察力的“发现者”。我们如何才能提升他们的科学直觉?
答:首先,随着模型能力的提升,我已经感受到它们识别科学问题局限性的能力在提升。早期的DeepSeek-R1版本,它的观察结果非常肤浅。但Qwen-3-235B-Thinking-2507发布后,它的洞察力和假设生成能力明显提升。在我看来,只有比Qwen-3-235B版本更强大的模型才能产生真正有价值的发现。
RLVR(基于可验证奖励的强化学习)是一个很有前景的方向,但它也面临挑战:成本高昂、训练效率低,大约需要1000个GPU小时才能生成一个有用的样本。
6、问:这项研究的总成本约为10万美元(约合71.3万元人民币)。与资助一名人类博士生进行类似研究周期相比,您认为目前这笔费用是否划算?
答:我认为两者各有优势。失败是成功之母,而AI最大的优势在于它能够持续探索而不疲倦。
一方面,我们可以依靠AI尝试许多不同的策略——即使发现某种方法在某个领域失败了,本身也是一个有意义的发现。另一方面,这仅仅是个开始。未来几年,由于能力的提升和推理成本的降低,AI的成本将大幅下降。
7、问:您论文中最令人兴奋的发现之一是计算资源与研究产出之间的“近线性关系”。您预测这种趋势会随着GPU数量的增加而无限期地持续下去吗?还是很快就会遇到瓶颈?下一个瓶颈可能是什么?
答:我认为这种情况不会无限期地持续下去。我们即将遇到瓶颈。下一个瓶颈将是“探索效率”,而不是“探索规模”。目前,大多数计算资源都浪费在低价值的探索上。未来的挑战是如何避免这种低价值的工作。
虽然DeepScientist偶尔会通过反复试验发现新的方法来提高性能,但收益往往微乎其微。只有当我们能够进行大规模、高价值的探索时,真正的突破才会到来。
8、问:还有其他惊喜吗?
答:是的!10月初,我们双方将全面开源一款工具。我相信每位研究人员都会对此感兴趣——它显著增强了DeepScientist的演示能力。
三、4步渐进式开源:10月中用户可构建自己的AI科学家
DeepScientist的整个开源计划会分为四个阶段。
阶段0:通用智能体框架
西湖大学已经在ResearAI/ResearStudio开源了前端和后端代码。用户可以以此为基础,使用自己的自定义工具构建各种专业的Agent。

